Seasonal and spatial variability of dissolved organic matter in the lower Amazon River


We analyzed the molecular composition of dissolved organic matter (DOM) in the lower Amazon River (ca. 850 km from Obidos to the mouth) using ultrahigh-resolution mass spectrometry and geochemical tracers. Changes in DOM composition along this lower reach suggest a transition from higher plant-derived DOM to more algal/microbial-derived DOM. This result was likely due to a combination of autochthonous production, alteration of terrigenous DOM as it transits down the river, and increased algal inputs from floodplain lakes and clearwater tributaries during high discharge conditions. Spatial gradients in dissolved organic carbon (DOC) concentrations varied with discharge. Maximal DOC concentrations were observed near the mouth during high water, highlight- ing the importance of lateral inputs of DOM along the lower river. The majority of DOM molecular formulae did not change within the time it takes the water in the mainstem to be transported through the lower reach. This is indicative of molecules representing a mixture of compounds that are resistant to rapid alteration and reactive compounds that are continuously replenished by the lateral input of terrestrial organic matter from the landscape, tributaries, and floodplains. River water incubations revealed that photo- and bio-transforma- tion alter at most 30% of the DOM molecular formulae. River discharge at the mouth differed from the sum of discharge measurements made at Obidos and the main gauged tributaries in the lower Amazon. This indicates that changes in hydrology and associated variations in the source waters along the lower reach affected the molecular composition of the DOM that is being transported from the Amazon River to the coastal ocean.

Biogeochemistry, 131 (3), 281-302